Skolem-labeling of generalized three-vane windmills
نویسندگان
چکیده
A graph on 2n vertices can be Skolem-labeled if the vertices can be given labels from {1, . . . , n} such that each label i is assigned to exactly two vertices and these vertices are at distance i. Mendelsohn and Shalaby have characterized the Skolem-labeled paths, cycles and windmills (of fixed vane length). In this paper, we obtain necessary conditions for the Skolem-labeling of generalized k-windmills in which the vanes may be of different length. We show that these conditions are sufficient in the case where k = 3 and conjecture that any generalized k-windmill, k > 3, can be Skolem-labeled if and only if it satisfies these necessary conditions.
منابع مشابه
Skolem labellings of generalised Dutch windmills
In this paper, we consider Skolem (vertex) labellings and present (hooked) Skolem labellings for generalised Dutch windmills whenever such labellings exist. Specifically, we show that generalised Dutch windmills with more than two cycles cannot be Skolem labelled and that those composed of two cycles of lengths m and n, n ≥ m, cannot be Skolem labelled if and only if n−m ≡ 3, 5 (mod 8) and m is...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملNP-completeness of generalized multi-Skolem sequences
A Skolem sequence is a sequence a1, a2, . . . , a2n (where ai ∈ A = {1, . . . , n}), each ai occurs exactly twice in the sequence and the two occurrences are exactly ai positions apart. A set A that can be used to construct Skolem sequences is called a Skolem set. The existence question of deciding which sets of the form A = {1, . . . , n} are Skolem sets was solved by Thoralf Skolem [6] in 195...
متن کاملA note on the hardness of Skolem-type sequences
The purpose of this note is to give upper bounds (assuming P different from NP) on how far the generalizations of Skolem sequences can be taken while still hoping to resolve the existence question. We prove that the existence questions for both multi Skolem sequences and generalized Skolem sequences are strongly NP-complete. These results are significant strengthenings and simplifications of th...
متن کامل$Z_k$-Magic Labeling of Some Families of Graphs
For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic} if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$ defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$ the group of integers modulo $k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 41 شماره
صفحات -
تاریخ انتشار 2008